On the choice of homogenization method to achieve effective mechanical properties of composites reinforced by ellipsoidal and spherical particles
نویسندگان
چکیده
In this paper, several rigorous numerical simulations were conducted to examine the relevance of mean-field micromechanical models compared to the Fast Fourier Transform full-field computation by considering spherical or ellipsoidal inclusions. To be more general, the numerical study was extended to a mixture of different kind of microstructures consisting of spheroidal shapes within the same RVE. Although the Fast Fourier Transform full field calculation is sensitive to high contrasts, calculation time, for a combination of complex microstructures, remains reasonable compared with those obtained with mean-field micromechanical models. Moreover, for low volume fractions of inclusions, the results of the mean-field approximations and those of the Fast Fourier Transform-based (FFTb) full-field computation are very close, whatever the inclusions morphology is. For RVEs consisting of ellipsoidal or a mixture of ellipsoidal and spherical inclusions, when the inclusions volume fraction becomes higher, one observes that Lielens’ model and the FFTb fullfield computation give similar estimates. The accuracy of the computational methods depends on the shape of the inclusions’ and their volume fraction.
منابع مشابه
A numerical study on reinforced composites by spherical nano-particles
In the current paper, finite element method is employed for numerical simulations and the study of influential parameters on elastic modulus of polymer-matrix nano-composites. Effects of different key parameters including particle elastic modulus, interphase elastic modulus, matrix elastic modulus, interphase thickness and particle volume fraction on total elastic modulus of nano-composite mate...
متن کاملA numerical study on reinforced composites by spherical nano-particles
In the current paper, finite element method is employed for numerical simulations and the study of influential parameters on elastic modulus of polymer-matrix nano-composites. Effects of different key parameters including particle elastic modulus, interphase elastic modulus, matrix elastic modulus, interphase thickness and particle volume fraction on total elastic modulus of nano-composite mate...
متن کاملThermal Stability and Dynamic Mechanical Properties of Nano and Micron-TiO2 Particles Reinforced Epoxy Composites: Effect of Mixing Method
متن کامل
A Numerical Method for the Determination of an Effective Modules for Coated Glass Fibers Used in Phenolic Composites
It is well known that the mechanical properties of fiberglass reinforced "phenolic moulding compounds" are significantly enhanced if the glass particles are coated with silane coupling agents before compounding. It has been shown that improvements obtained by using scanning electron microscopy techniques are due to better bonding of phenolic resin to the surface of treated glass fibers. These o...
متن کاملNumerical Simulation of a Hybrid Nanocomposite Containing Ca-CO3 and Short Glass Fibers Subjected to Tensile Loading
The tensile properties of multiscale, hybrid, thermoplastic-based nanocomposites reinforced with nano-CaCO3 particles and micro–short glass fibers (SGF) were predicted by a two-step, three-dimensionalmodel using ANSYS finite element (FE) software. Cylindrical and cuboid representative volume elements were generated to obtain the effective behavior of the multiscale hybrid composites. In the fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1701.09131 شماره
صفحات -
تاریخ انتشار 2017